Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 105
Machine learning, 1996, Vol.25 (1), p.71-110
1996
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
On-line prediction and conversion strategies
Ist Teil von
  • Machine learning, 1996, Vol.25 (1), p.71-110
Erscheinungsjahr
1996
Quelle
SpringerLINK Contemporary (Konsortium Baden-Württemberg)
Beschreibungen/Notizen
  • We study the problem of deterministically predicting boolean values by combining the boolean predictions of several experts. Previous on-line algorithms for this problem predict with the weighted majority of the experts' predictions. These algorithms give each expert an exponential weight beta super(m) where beta is a constant in [0, 1) and m is the number of mistakes made by the expert in the past. We show that it is better to use sums of binomials as weights. In particular, we present a deterministic algorithm using binomial weights that has a better worst case mistake bound than the best deterministic algorithm using exponential weights. The binomial weights naturally arise from a version space argument. We also show how both exponential and binomial weighting schemes can be used to make prediction algorithms robust against noise.
Sprache
Englisch
Identifikatoren
ISSN: 0885-6125
eISSN: 1573-0565
DOI: 10.1007/BF00115301
Titel-ID: cdi_proquest_miscellaneous_26244433
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX