Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 184
Briefings in bioinformatics, 2022-03, Vol.23 (2)
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
sc-REnF: An entropy guided robust feature selection for single-cell RNA-seq data
Ist Teil von
  • Briefings in bioinformatics, 2022-03, Vol.23 (2)
Ort / Verlag
England: Oxford University Press
Erscheinungsjahr
2022
Quelle
EBSCOhost Business Source Ultimate
Beschreibungen/Notizen
  • Abstract Annotation of cells in single-cell clustering requires a homogeneous grouping of cell populations. Since single-cell data are susceptible to technical noise, the quality of genes selected prior to clustering is of crucial importance in the preliminary steps of downstream analysis. Therefore, interest in robust gene selection has gained considerable attention in recent years. We introduce sc-REnF [robust entropy based feature (gene) selection method], aiming to leverage the advantages of $R{\prime}{e}nyi$ and $Tsallis$ entropies in gene selection for single cell clustering. Experiments demonstrate that with tuned parameter ($q$), $R{\prime}{e}nyi$ and $Tsallis$ entropies select genes that improved the clustering results significantly, over the other competing methods. sc-REnF can capture relevancy and redundancy among the features of noisy data extremely well due to its robust objective function. Moreover, the selected features/genes can able to determine the unknown cells with a high accuracy. Finally, sc-REnF yields good clustering performance in small sample, large feature scRNA-seq data. Availability: The sc-REnF is available at https://github.com/Snehalikalall/sc-REnF
Sprache
Englisch
Identifikatoren
ISSN: 1467-5463
eISSN: 1477-4054
DOI: 10.1093/bib/bbab517
Titel-ID: cdi_proquest_miscellaneous_2620785871

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX