Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 113374

Details

Autor(en) / Beteiligte
Titel
Gallic Acid and Gallic Acid Nanoparticle Modulate Insulin Secretion Pancreatic β-Islets against Silica Nanoparticle–Induced Oxidative Damage
Ist Teil von
  • Biological trace element research, 2022-12, Vol.200 (12), p.5159-5171
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Springer LINK 全文期刊数据库
Beschreibungen/Notizen
  • Due to the increasing use of silica nanoparticles (SiNPs), their possible toxic effects on human health have undoubtedly been considered. Previous studies proved that SiNPs induced oxidative stress. Reactive oxygen species (ROS) and oxidative stress disrupt cell function and decrease insulin secretion. Therefore, this study intended to assess the effects of SiNPs on oxidative stress and insulin secretion and also the protective effects of gallic acid (GA) and gallic acid nanoparticles (NP-GA) on pancreatic β-islets. In this study, the mice islets were separated and pretreated with various concentrations of GA and NP-GA then treated with a single dose of SiNPs. The cell viability of islets examined by MTT assay and also the levels of ROS, malondialdehyde (MDA), glutathione (GSH); activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and insulin secretion were evaluated. The results of MTT assay showed that SiNPs reduced islet viability in a dose-dependent manner and also insulin secretion, induced the formation of ROS, augmented MDA amounts, and decreased GSH levels, SOD, GPx, and CAT activities. Furthermore, pretreatment of islets with GA and NP-GA significantly returned these alterations at low dose. These findings suggested that SiNPs induced oxidative stress in the pancreatic islets, which could be one of the reasons for the decrease in insulin secretion and inducing diabetes. This study also showed that low doses of GA and NP-GA boosted the antioxidant defense system in the pancreatic β-islets, preventing oxidative stress and, consequently, the progression of diabetes.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX