Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 167461

Details

Autor(en) / Beteiligte
Titel
Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction
Ist Teil von
  • Angewandte Chemie International Edition, 2022-02, Vol.61 (6), p.e202115835-n/a
Auflage
International ed. in English
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Pt−Co nanoalloys planted in the metal–nitrogen–graphene system achieved by a scalable molten salt pyrolysis method demonstrate improved activity and stability for oxygen reduction through a synergistic effect among multiple active sites and a strong metal–support interaction.
Sprache
Englisch
Identifikatoren
ISSN: 1433-7851
eISSN: 1521-3773
DOI: 10.1002/anie.202115835
Titel-ID: cdi_proquest_miscellaneous_2612377625

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX