Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Metabolic programming is intricately linked to the anti-tumor properties of T cells. To study the metabolic pathways associated with increased anti-tumor T cell function, we utilized a metabolomics approach to characterize three different CD8
T cell subsets with varying degrees of anti-tumor activity in murine models, of which IL-22-producing Tc22 cells displayed the most robust anti-tumor activity. Tc22s demonstrated upregulation of the pantothenate/coenzyme A (CoA) pathway and a requirement for oxidative phosphorylation (OXPHOS) for differentiation. Exogenous administration of CoA reprogrammed T cells to increase OXPHOS and adopt the CD8
Tc22 phenotype independent of polarizing conditions via the transcription factors HIF-1α and the aryl hydrocarbon receptor (AhR). In murine tumor models, treatment of mice with the CoA precursor pantothenate enhanced the efficacy of anti-PDL1 antibody therapy. In patients with melanoma, pre-treatment plasma pantothenic acid levels were positively correlated with the response to anti-PD1 therapy. Collectively, our data demonstrate that pantothenate and its metabolite CoA drive T cell polarization, bioenergetics, and anti-tumor immunity.