Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
In this contribution we establish a proof of concept method for monitoring, quantifying and differentiating the extracellular phosphorylation of Human SHSY5Y undifferentiated neuronal cells and neuroblastoma cells by three prominent ectokinases PKA, PKC and Src. Herein it is demonstrated that a combination of different experimental techniques, including fluorescence microscopy, quartz crystal microscopy (QCM) and electrochemistry, can be used to detect extracellular phosphorylation levels of neuronal and neuroblastoma cells. Phosphorylation profiles of the three ectokinases, PKA, PKC and Src, were investigated using fluorescence microscopy and the number of phosphorylation sites per kinase was estimated using QCM. Finally, the phosphorylation of the extracellular membrane was determined using electrochemistry. Our results clearly demonstrate that the extracellular phosphorylation of neuronal cells differs significantly in terms of its phosphorylation profile from diseased neuroblastoma cells and the strength of surface electrochemical techniques in the differentiation process. We reveal that using electrochemistry, the percent compositions of neuronal and neuroblastoma cells can also be identified.
[Display omitted]
•First demonstration that the phosphorylation state, as phosphorylated by PKA, PKC and Src, of neuronal cells and neuroblastoma cells can be distinguished electrochemically.•Extracellular phosphorylation demonstrated through the use of Fluorescence, Quartz crystal microscopy and electrochemistry.•Establish electrochemistry as a stand-alone technique for phosphorylation detection.•Demonstration of electrochemistry used to determine the percent composition of neuronal and neuroblastoma cell suspension mixtures.