Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 518

Details

Autor(en) / Beteiligte
Titel
Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L
Ist Teil von
  • Environmental research, 2022-04, Vol.206, p.112238-112238, Article 112238
Ort / Verlag
Netherlands: Elsevier Inc
Erscheinungsjahr
2022
Quelle
MEDLINE
Beschreibungen/Notizen
  • Cadmium (Cd) and arsenic (As) contamination of paddy soils is a serious global issue because of the opposite geochemical behavior of Cd and As in paddy soils. Rice plant (Oryza sativa L.) cultivation in Cd- and As- contaminated paddy soil is regarded as one of the main dietary cause of Cd and As entry in human beings. This study aimed to determine the impact of goethite-modified biochar (GB) on bioavailability of both Cd and As in Cd- and As- polluted paddy soil. Contrary to control and biochar (BC) amendments, the application of GB amendments significantly impeded the accumulation of both Cd and As in rice plants. The results confirmed an obvious reduction in Cd and As content of rice grains by 85% and 77%, respectively after soil supplementation with GB 2% amendment. BC 3% application minimized the Cd uptake by 59% in the rice grains as compared to the control but exhibited a little impact on As accumulation in rice grains. Sequential extraction results displayed an increase in immobile Cd and As fractions of the soil by decreasing the bioavailable fractions of both elements after GB treatments. Fe-plaque formation on the root surfaces was significantly variable (P ˂ 0.05) among all the amendments. GB 2% treatment significantly increased the Fe content (10 g kg−1) of root Fe-plaque by 48%, which ultimately enhanced the sequestration of Cd and As by Fe-plaque and minimized the transport of Cd and As in rice plants. Moreover, GB treatments significantly changed the relative abundance of the microbial community in the rice rhizosphere and minimized the metal(loid)s mobility in the soil. The relative abundance of Acidobacteria, Firmicutes and Verrucomicrobia increased with GB 2% treatment while those of Bacteroidetes and Choloroflexi decreased. Our findings confirmed improvement in the rice grains quality regarding enhanced amino acid contents with GB application. Overall, the results of this study demonstrated that GB amendment simultaneously alleviated the Cd and As concentrations in edible parts of rice plant and provided a new valuable method to protect the public health by effectively remediating the co-occurrence of Cd and As in paddy soils. •Goethite modified biochar (GB) amendments reduced the bioavailability of both Cd and As.•GB application improved the quality of rice grain.•GB application affected the relative abundance of soil microbial communities.•GB amendments multiplied the Cd, As, and Fe contents of root Fe-plaque.
Sprache
Englisch
Identifikatoren
ISSN: 0013-9351
eISSN: 1096-0953
DOI: 10.1016/j.envres.2021.112238
Titel-ID: cdi_proquest_miscellaneous_2585914626

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX