Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 838

Details

Autor(en) / Beteiligte
Titel
Breaking the Efficiency Limit of Deep‐Blue Fluorescent OLEDs Based on Anthracene Derivatives
Ist Teil von
  • Advanced materials (Weinheim), 2022-01, Vol.34 (1), p.e2100161-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Wiley HSS Collection
Beschreibungen/Notizen
  • Triplet harvesting is important for the realization of high‐efficiency fluorescent organic light‐emitting diodes (OLEDs). Triplet–triplet annihilation (TTA) is one triplet‐harvesting strategy. However, for blue‐emitting anthracene derivatives, the theoretical maximum radiative singlet‐exciton ratio generated from the TTA process is known to be 15% in addition to the initially generated singlets of 25%, which is insufficient for high‐efficiency fluorescent devices. In this study, nearly 25% of the radiative singlet‐exciton ratio is realized by TTA using an anthracene derivative, breaking the theoretical limit. As a result, efficient deep‐blue TTA fluorescent devices are developed, exhibiting external quantum efficiencies of 10.2% and 8.6% with Commission Internationale de l'Eclairage color coordinates of (0.134, 0.131) and (0.137, 0.076), respectively. The theoretical model provided herein explains the experimental results considering both the TTA and reverse intersystem crossing to a singlet state from higher triplet states formed by the TTA, clearly demonstrating that the radiative singlet ratio generated from TTA can reach 37.5% (total radiative singlet‐exciton ratio: 62.5%), well above 15% (total 40%), despite the molecule having S1, T2 < 2T1 < Q1 energy levels, which will lead to the development of high‐efficiency fluorescent OLEDs with external quantum efficiencies exceeding 28% if the outcoupling efficiency is 45%. The triplet–triplet annihilation (TTA) process can recycle nonradiative triplet excitons to radiative singlet excitons and enhance the efficiency of fluorescent organic light‐emitting diodes (OLEDs). Conventionally, the theoretical limit of delayed emission ratio by the TTA process is known to be 37.5% in anthracene‐based molecules. In this work, 48% of delayed emission ratio is achieved by TTA with carefully designed blue OLEDs.
Sprache
Englisch
Identifikatoren
ISSN: 0935-9648
eISSN: 1521-4095
DOI: 10.1002/adma.202100161
Titel-ID: cdi_proquest_miscellaneous_2584780432

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX