Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 5652

Details

Autor(en) / Beteiligte
Titel
Crystal Phase Transition Creates a Highly Active and Stable RuCX Nanosurface for Hydrogen Evolution Reaction in Alkaline Media
Ist Teil von
  • Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2105248-n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Although metastable crystal structures have received much attention owing to their utilization in various fields, their phase‐transition to a thermodynamic structure has attracted comparably little interest. In the case of nanoscale crystals, such an exothermic phase‐transition releases high energy within a confined surface area and reconstructs surface atomic arrangement in a short time. Thus, this high‐energy nanosurface may create novel crystal structures when some elements are supplied. In this work, the creation of a ruthenium carbide (RuCX, X < 1) phase on the surface of the Ru nanocrystal is discovered during phase‐transition from cubic‐close‐packed to hexagonal‐close‐packed structure. When the electrocatalytic hydrogen evolution reaction (HER) is tested in alkaline media, the RuCX exhibits a much lower overpotential and good stability relative to the counterpart Ru‐based catalysts and the state‐of‐the‐art Pt/C catalyst. Density functional theory calculations predict that the local heterogeneity of the outermost RuCX surface promotes the bifunctional HER mechanism by providing catalytic sites for both H adsorption and facile water dissociation. Crystal phase‐transition of Ru/C from cubic‐close‐packing to hexagonal‐close‐packing creates a ruthenium carbide (RuCX, X < 1) nanosurface on Ru nanocrystal. The as‐created RuCX nanosurface presents a highly active and stable performance for the hydrogen evolution reaction (HER) in alkaline media. Density functional theory calculations predict the RuCX sites as bifunctional configurations for improving alkaline HER kinetics.
Sprache
Englisch
Identifikatoren
ISSN: 0935-9648
eISSN: 1521-4095
DOI: 10.1002/adma.202105248
Titel-ID: cdi_proquest_miscellaneous_2579633351

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX