Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 158

Details

Autor(en) / Beteiligte
Titel
Using integrated models to analyze and predict the variance of diatom community composition in an agricultural area
Ist Teil von
  • The Science of the total environment, 2022-01, Vol.803, p.149894-149894, Article 149894
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • With the growing demand of assessing the ecological status, there is the need to fully understand the relationship between the planktic diversity and the environmental factors. Species richness and Shannon index have been widely used to describe the biodiversity of a community. Besides, we introduced the first ordination value from non-metric multidimensional scaling (NMDS) as a new index to represent the community similarity variance. In this study, we hypothesized that the variation of diatom community in rivers in an agricultural area was influenced by hydro-chemical variables. We collected daily mixed water samples using ISCO auto water samplers for diatoms and for water-chemistry analysis at the outlet of a lowland river for a consecutive year. An integrated modeling was adopted including random forest (RF) to decide the importance of the environmental factors influencing diatoms, generalized linear models (GLMs) combined with 10-folder cross validation to analyze and predict the diatom variation. The hierarchical analysis highlighted antecedent precipitation index (API) as the controlling hydrological variable while water temperature, Si2+ and PO4-P as the main chemical controlling factors in our study area. The generalized linear models performed better prediction for Shannon index (R2 = 0.44) and NMDS (R2 = 0.51) than diatom abundance (R2 = 0.25) and species richness (R2 = 0.25). Our findings confirmed that Shannon index and the NMDS as an index showed good performance in explaining the relationship between stream biota and its environmental factors and in predicting the diatom community development based on the hydro-chemical predictors. Our study showed and highlighted the important hydro-chemical factors in the agricultural rivers, which could contribute to the further understanding of predicting diatom community development and could be implemented in the future water management protocol. [Display omitted] •Shannon index and NMDS perform better in explaining and predicting the relationship between diatom and environment•Antecedent precipitation index, water temperature, Si2+ and PO4-P are the main controlling factors•The understanding of predicting diatom community development could be implemented in the future water management protocol
Sprache
Englisch
Identifikatoren
ISSN: 0048-9697
eISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2021.149894
Titel-ID: cdi_proquest_miscellaneous_2573438957

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX