Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 189

Details

Autor(en) / Beteiligte
Titel
Wafer‐Scale 2D Hafnium Diselenide Based Memristor Crossbar Array for Energy‐Efficient Neural Network Hardware
Ist Teil von
  • Advanced materials (Weinheim), 2022-06, Vol.34 (25), p.e2103376-n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Memristor crossbar with programmable conductance could overcome the energy consumption and speed limitations of neural networks when executing core computing tasks in image processing. However, the implementation of crossbar array (CBA) based on ultrathin 2D materials is hindered by challenges associated with large‐scale material synthesis and device integration. Here, a memristor CBA is demonstrated using wafer‐scale (2‐inch) polycrystalline hafnium diselenide (HfSe2) grown by molecular beam epitaxy, and a metal‐assisted van der Waals transfer technique. The memristor exhibits small switching voltage (0.6 V), low switching energy (0.82 pJ), and simultaneously achieves emulation of synaptic weight plasticity. Furthermore, the CBA enables artificial neural network with a high recognition accuracy of 93.34%. Hardware multiply‐and‐accumulate (MAC) operation with a narrow error distribution of 0.29% is also demonstrated, and a high power efficiency of greater than 8‐trillion operations per second per Watt is achieved. Based on the MAC results, hardware convolution image processing can be performed using programmable kernels (i.e., soft, horizontal, and vertical edge enhancement), which constitutes a vital function for neural network hardware. A 2D hafnium diselenide (HfSe2) memristor crossbar array (CBA) is demonstrated via wafer‐scale molecular beam epitaxy growth and metal‐assisted van der Waals transfer techniques. The CBA enables artificial neural network with high recognition accuracy of 93.34%, and achieves hardware convolution image processing using energy‐efficient multiply‐and accumulate operations.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX