Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A simple water treatment system consisting of a deep UV light (λ = 222 nm) source, a mesoporous TiO2/boron-doped diamond (BDD) photocatalyst, and a BDD electrode was prepared and used to decompose sulfamethoxazole (SMX) in an advanced oxidation process. The mesoporous TiO2/BDD photocatalyst used with the electrochemical treatment promoted SMX decomposition, but the mesoporous TiO2/BDD photocatalyst alone had a similar ability to decompose SMX as photolysis. Fragments produced through photocatalytic treatment were decomposed during the electrochemical treatment and fragments produced during the electrochemical treatment were decomposed during the photocatalytic treatment, so performing the electrochemical and photocatalytic treatments together effectively decomposed SMX and decrease the total organic carbon concentration to a trace.
[Display omitted]
•A simple water treatment system consisting of a deep UV light source and boron doped diamond (BDD) is prepared.•Decomposition process of sulfamethoxazole (SMX) differs in photolysis and electrochemical treatment by BDD.•Fragments caused by photocatalytic treatment are decomposed during the electrochemical treatment and vice versa.•Combination between electrochemical and photocatalytic treatment promotes the oxidative decomposition of SMX.