Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 68

Details

Autor(en) / Beteiligte
Titel
Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates
Ist Teil von
  • Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (39), p.e2103457-n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge‐exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge‐rich MoS2 nanoplates are elaborately synthesized and deposited on p‐Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti‐reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p‐Si and catalyst layers facilitates the transport of photogenerated electrons under steady‐state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p‐Si photocathode exhibits significantly improved photoelectrochemical‐hydrogen evolution reaction (PEC‐HER) performance in alkaline media with a high photocurrent density of 10 mA cm−2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth‐abundant Fe60(NiCo)30Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm−2 corresponding to 6.6% solar‐to‐hydrogen efficiency, which is the highest among p‐Si photocathodes. TiO2 nanorods decorated by edge‐exposed MoS2 nanoplates are successfully deposited on silicon photocathode using hydrothermal method. The device shows remarkable photoelectrochemical performance under alkaline environment due to enhanced anti‐reflectance, edge‐rich active sites, and energetically favorable photogenerated electron transfer. Based on as‐fabricated photocathode, photoelectrochemical‐photovoltaic tandem device is constructed for unbiased alkaline solar water splitting, exhibiting 6.6% solar‐to‐hydrogen efficiency.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX