Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 10767

Details

Autor(en) / Beteiligte
Titel
Hepatic demethylation of methoxy-bromodiphenyl ethers and conjugation of the resulting hydroxy-bromodiphenyl ethers in a marine fish, the red snapper, Lutjanus campechanus, and a freshwater fish, the channel catfish, Ictalurus punctatus
Ist Teil von
  • Chemosphere (Oxford), 2022-01, Vol.286, p.131620-131620, Article 131620
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2022
Link zum Volltext
Quelle
ScienceDirect Journals (5 years ago - present)
Beschreibungen/Notizen
  • Methoxylated bromodiphenyl ethers (MeO-BDEs), marine natural products, can be demethylated by cytochrome P450 to produce hydroxylated bromodiphenyl ethers (OH-BDEs), potentially toxic metabolites that are also formed by hydroxylation of BDE flame retardants. The OH-BDEs may be detoxified by glucuronidation and sulfonation. This study examined the demethylation of 6-MeO-BDE47, 2′-MeO-BDE68 and 4′-MeO-BDE68, in hepatic microsomes from the red snapper, Lutjanus campechanus, a marine fish likely to be exposed naturally to MeO-BDEs, and the channel catfish, Ictalurus punctatus, a freshwater fish in which pathways of xenobiotic biotransformation have been studied. We further studied the glucuronidation and sulfonation of the resulting OH-BDEs as well as of 6-OH-2′-MeO-BDE68 in hepatic microsomes and cytosol fractions of these fish. The three studied biotransformation pathways were active in both species, with high individual variability. The range of activities overlapped in the two species. Demethylation of MeO-BDEs, studied in the concentration range 10–500 μM, followed Michaelis-Menten kinetics in both fish species, however enzyme efficiencies were low, ranging from 0.024 to 0.334 μL min.mg protein. Conjugation of the studied OH-BDEs followed Michaelis-Menten kinetics in the concentration ranges 1–50 μM (glucuronidation) or 2.5–100 μM (sulfonation). These OH-BDEs were readily glucuronidated and sulfonated in the fish livers of both species, with enzyme efficiencies one to three orders of magnitude higher than for demethylation of the precursor MeO-BDEs. The relatively low efficiencies of demethylation of the MeO-BDEs, compared with higher efficiencies for OH-BDE conjugation, suggests that MeO-BDEs are more likely than OH-BDEs to bioaccumulate in tissues of exposed fish. •Demethylation of MeO-BDE natural products was slow in marine and freshwater fish.•Me-OBDEs are likely to bioaccumulate in exposed fish due to slow biotransformation.•The resulting OH-BDE metabolites were efficiently glucuronidated and sulfonated.•The demethylated OH-BDEs metabolites, have lower potential for bioaccumulation.
Sprache
Englisch
Identifikatoren
ISSN: 0045-6535
eISSN: 1879-1298
DOI: 10.1016/j.chemosphere.2021.131620
Titel-ID: cdi_proquest_miscellaneous_2555335444

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX