Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 24

Details

Autor(en) / Beteiligte
Titel
Functional effects of berberine in modulating mitochondrial dysfunction and inflammatory response in the respective amyloidogenic cells and activated microglial cells – In vitro models simulating Alzheimer's disease pathology
Ist Teil von
  • Life sciences (1973), 2021-10, Vol.282, p.119824-119824, Article 119824
Ort / Verlag
New York: Elsevier Inc
Erscheinungsjahr
2021
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • Berberine (BBR) is an alkaloid extracted from Coptidis Rhizoma, also known as Huang-Lian. Huang-Lian has been used extensively in traditional Chinese medicine for the treatment of various diseases, including diabetes and dementia. Because Alzheimer's disease (AD) is a complex disease that involves various pathophysiological changes, the diverse neuroprotective effects of BBR may be useful for improving the brain's energy state at an early stage of the disease. We performed extracellular flux and 1H NMR-based metabolic profiling analyses to investigate the effects of BBR on metabolic processes in these cells. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-γ (PPARγ) agonist has been studied extensively for the treatment of AD. We explored the combination dosing effects of BBR and PIO in vitro, then leveraged computational methods to explain the experimental finding. BBR demonstrates potential in modulating the mitochondrial bioenergetics and attenuating dysfunction of the primary energy and glutathione metabolism pathways in an AD cell model. It also suppresses basal respiration and reduces the production of pro-inflammatory cytokines in activated microglial cells. Both experimental and computational observations indicate that BBR and PIO have comparable binding affinities to the PPARγ protein, suggesting both drugs may have some overlapping effects for AD. BBR exerts beneficial effects on disrupted metabolic processes in amyloidogenic cells and activated microglial cells, which are important for preventing or delaying early-stage disease progression. The choice of BBR or PIO for AD treatment depends on their respective pharmacokinetic profiles, delivery, efficacy and safety, and warrants further study.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX