Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Predictive Immune-Checkpoint Blockade Classifiers Identify Tumors Responding to Inhibition of PD-1 and/or CTLA-4
Ist Teil von
  • Clinical cancer research, 2021-10, Vol.27 (19), p.5389-5400
Ort / Verlag
United States
Erscheinungsjahr
2021
Quelle
MEDLINE
Beschreibungen/Notizen
  • Combining anti-PD-1 + anti-CTLA-4 immune-checkpoint blockade (ICB) shows improved patient benefit, but it is associated with severe immune-related adverse events and exceedingly high cost. Therefore, there is a dire need to predict which patients respond to monotherapy and which require combination ICB treatment. In patient-derived melanoma xenografts (PDX), human tumor microenvironment (TME) cells were swiftly replaced by murine cells upon transplantation. Using our XenofilteR deconvolution algorithm we curated human tumor cell RNA reads, which were subsequently subtracted in silico from bulk (tumor cell + TME) patients' melanoma RNA. This produced a purely tumor cell-intrinsic signature ("InTumor") and a signature comprising tumor cell-extrinsic RNA reads ("ExTumor"). We show that whereas the InTumor signature predicts response to anti-PD-1, the ExTumor predicts anti-CTLA-4 benefit. In PDX, InTumorLO, but not InTumorHI, tumors are effectively eliminated by cytotoxic T cells. When used in conjunction, the InTumor and ExTumor signatures identify not only patients who have a substantially higher chance of responding to combination treatment than to either monotherapy, but also those who are likely to benefit little from anti-CTLA-4 on top of anti-PD-1. These signatures may be exploited to distinguish melanoma patients who need combination ICB blockade from those who likely benefit from either monotherapy.
Sprache
Englisch
Identifikatoren
ISSN: 1078-0432
eISSN: 1557-3265
DOI: 10.1158/1078-0432.CCR-20-4218
Titel-ID: cdi_proquest_miscellaneous_2549203806

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX