Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 3461

Details

Autor(en) / Beteiligte
Titel
Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats
Ist Teil von
  • Environmental science and pollution research international, 2021-10, Vol.28 (40), p.56822-56834
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2021
Link zum Volltext
Quelle
SpringerLink
Beschreibungen/Notizen
  • Emphysema is associated with an abnormal airspace enlargement distal to the terminal bronchioles accompanied by destructive changes in the alveolar walls and chronic inflammation. Air pollution can cause respiratory diseases such as chronic obstructive pulmonary disease (COPD) and emphysema in urban areas. As a natural antioxidant compound, gallic acid may be effective in controlling inflammation and preventing disease progression. In this research, we investigated the protective role of gallic acid in the inflammatory process and the possible signaling pathway in the elastase-induced emphysema. Forty-eight rats were divided into six different groups including the following: control, gallic acid (7.5, 15, and 30 mg/kg), porcine pancreatic elastase (PPE), and PPE+gallic acid 30 mg/kg. Oxidative stress indexes such as malondialdehyde and antioxidant enzyme activity were measured in all groups. The gene expression levels of heme oxygenase-1 (HO-1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were determined as key regulators of antioxidant and inflammation system. The PPE group showed pulmonary edema and a significant change in arterial blood gas values, which was associated with decreased antioxidant activity of enzymes and changes in NF-κB, HO-1, and Nrf2 gene expression in comparison to the control group. Co-treatment with gallic acid preserved all these changes approximately to the normal levels. The results confirmed that elastase-induced emphysema leads to lung injuries, which are associated with oxidative stress and inflammation. Also, the results suggested that gallic acid as a natural antioxidant agent can modulate the Nrf2 signaling pathway to protect the lung against elastase-induced emphysema. Therefore, we documented the evidence for the importance of NF-κB inhibitors and Nrf2 activators as a target for new treatments in respiratory dysfunction caused by oxidative agents.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX