Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 1733

Details

Autor(en) / Beteiligte
Titel
Asenapine maleate inhibits angiotensin II-induced proliferation and activation of cardiac fibroblasts via the ROS/TGFβ1/MAPK signaling pathway
Ist Teil von
  • Biochemical and biophysical research communications, 2021-05, Vol.553, p.172-179
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Cardiac fibrosis will increase wall stiffness and diastolic dysfunction, which will eventually lead to heart failure. Asenapine maleate (AM) is widely used in the treatment of schizophrenia. In the current study, we explored the potential mechanism underlying the role of AM in angiotensin II (Ang II)-induced cardiac fibrosis. Cardiac fibroblasts (CFs) were stimulated using Ang II with or without AM. Cell proliferation was measured using the cell counting kit-8 assay and the Cell-Light EdU Apollo567 In Vitro Kit. The expression levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were detected using immunofluorescence or western blotting. At the protein level, the expression levels of the components of the transforming growth factor beta 1 (TGFβ1)/mitogen-activated protein kinase (MAPK) signaling pathway were also detected. After Ang II stimulation, TGFβ1, TGFβ1 receptor, α-SMA, fibronectin (Fn), collagen type I (Col1), and collagen type III (Col3) mRNA levels increased; the TGFβ1/MAPK signaling pathway was activated in CFs. After AM pretreatment, cell proliferation was inhibited, the numbers of PCNA -positive cells and the levels of cardiac fibrosis markers decreased. The activity of the TGFβ1/MAPK signaling pathway was also inhibited. Therefore, AM can inhibit cardiac fibrosis by blocking the Ang II-induced activation through TGFβ1/MAPK signaling pathway. This is the first report to demonstrate that AM can inhibit Ang II-induced cardiac fibrosis by down-regulating the TGFβ1/MAPK signaling pathway. In this process, AM inhibited the proliferation and activation of CFs and reduced the levels of cardiac fibrosis markers. Thus, AM represents a potential treatment strategy for cardiac fibrosis. •Asenapine maleate (AM): new cardiac uses for an old drug.•AM, as a drug for the treatment of schizophrenia, could inhibit cardiac fibrosis.•AM acts through ROS/TGFβ1/MAPK signaling pathway.
Sprache
Englisch
Identifikatoren
ISSN: 0006-291X
eISSN: 1090-2104
DOI: 10.1016/j.bbrc.2021.03.042
Titel-ID: cdi_proquest_miscellaneous_2506280033

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX