Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Chemical Strategies for Making Strong Graphene Materials
Ist Teil von
Angewandte Chemie International Edition, 2021-08, Vol.60 (34), p.18397-18410
Auflage
International ed. in English
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Graphene materials have been widely applied in various fields because of their remarkable mechanical and electrical properties. However, two obstacles arise during the assembly of graphene platelets into macroscale graphene materials and composites that impair the performance of the resultant graphene materials: 1) the voids between the graphene platelets, and 2) the wrinkling of the graphene platelets. In the past decade, several strategies have been developed to eliminate these obstacles. These strategies result in strong macroscale graphene materials, such as graphene fibers with tensile strengths of over 3.4 GPa and sheets with tensile strengths of over 1.5 GPa, which have many practical applications. This Minireview summarizes the effective strategies for assembling graphene materials and compares their advantages and drawbacks. The preparation processes as well as the resulting fundamental mechanical properties and wide spectrum of electrical and magnetic properties are also discussed. Finally, our outlook for the future of this field is presented.
The advantages and drawbacks of strategies that generate strong graphene materials by eliminating the voids between the graphene platelets and the wrinkling of the graphene platelets are discussed in this Minireview. The fundamental mechanical properties and the wide‐ranging electrical and magnetic properties of the resulting materials are also discussed.