Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Angewandte Chemie International Edition, 2021-05, Vol.60 (19), p.10577-10582
International ed. in English, 2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Regulating the Local Charge Distribution of Ni Active Sites for the Urea Oxidation Reaction
Ist Teil von
  • Angewandte Chemie International Edition, 2021-05, Vol.60 (19), p.10577-10582
Auflage
International ed. in English
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In electrochemical energy storage and conversion systems, the anodic oxygen evolution reaction (OER) accounts for a large proportion of the energy consumption. The electrocatalytic urea oxidation reaction (UOR) is one of the promising alternatives to OER, owing to its low thermodynamic potential. However, owing to the sluggish UOR kinetics, its potential in practical use has not been unlocked. Herein, we developed a tungsten‐doped nickel catalyst (Ni‐WOx) with superior activity towards UOR. The Ni‐WOx catalyst exhibited record fast reaction kinetics (440 mA cm−2 at 1.6 V versus reversible hydrogen electrode) and a high turnover frequency of 0.11 s−1, which is 4.8 times higher than that without W dopants. In further experiments, we found that the W dopant regulated the local charge distribution of Ni atoms, leading to the formation of Ni3+ sites with superior activity and thus accelerating the interfacial catalytic reaction. Moreover, when we integrated Ni‐WOx into a CO2 flow electrolyzer, the cell voltage is reduced to 2.16 V accompanying with ≈98 % Faradaic efficiency towards carbon monoxide. A highly efficient W‐doped Ni‐WOx UOR catalyst for the urea oxidation reaction has been devised which could be used in CO2 electroreduction devices. A low cell voltage of 2.16 V was achieved in a CO2‐to‐CO electrolyzer, saving 15 % energy compared to standard devices based on the oxygen evolution reaction.
Sprache
Englisch
Identifikatoren
ISSN: 1433-7851
eISSN: 1521-3773
DOI: 10.1002/anie.202100610
Titel-ID: cdi_proquest_miscellaneous_2493449757

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX