Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 182
Environmental science and pollution research international, 2021-06, Vol.28 (23), p.29379-29393
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Using water-based drilling cuttings from shale gas development to manufacture sintered bricks: a case study in the southern Sichuan Basin, China
Ist Teil von
  • Environmental science and pollution research international, 2021-06, Vol.28 (23), p.29379-29393
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Large amounts of water-based drilling cuttings (WDC) would be generated during the drilling of shale gas wells, which would occupy land resources and pose significant threat to soil and groundwater environment. The aim of this study was to assess the feasibility of using WDC as a replacement of natural clay to prepare sintered bricks. To determine the optimum preparation condition, the weight loss on ignition, bulk density, water absorption, and compressive strength of the samples were tested. Meanwhile, the environmental performance of the final products was evaluated and micro-analysis was conducted via X-ray diffraction and scanning electron microscopy. The results showed that using WDC to manufacture sintered bricks was technically feasible, but the physical mechanical performance would significantly decrease with the increase of the replacement ratio because of the presence of less silica and excessive calcium. The addition of waste glass and fly ash could promote the generation of molten glassy phase and form the crystal particle bonding structure, which would contribute to the physical-mechanical performance of WDC sintered bricks. Some mineral components in raw materials decomposed and formed minerals with better thermal stability during the sintering process. Under the optimum preparation conditions (mass ratio of WDC: waste glass: fly ash at 40:20:40, sintering temperature at 900 °C, and insulation time at 2 h), the physical-mechanical and environmental performance of WDC sintered bricks could meet the requirements of corresponding Chinese standards and ASTM standards. Thus, in this study, an effective solution to recycle WDC from shale gas development is provided.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX