Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Riboexp: an interpretable reinforcement learning framework for ribosome density modeling
Ist Teil von
Briefings in bioinformatics, 2021-09, Vol.22 (5)
Ort / Verlag
England
Erscheinungsjahr
2021
Quelle
EBSCOhost Business Source Ultimate
Beschreibungen/Notizen
Translation elongation is a crucial phase during protein biosynthesis. In this study, we develop a novel deep reinforcement learning-based framework, named Riboexp, to model the determinants of the uneven distribution of ribosomes on mRNA transcripts during translation elongation. In particular, our model employs a policy network to perform a context-dependent feature selection in the setting of ribosome density prediction. Our extensive tests demonstrated that Riboexp can significantly outperform the state-of-the-art methods in predicting ribosome density by up to 5.9% in terms of per-gene Pearson correlation coefficient on the datasets from three species. In addition, Riboexp can indicate more informative sequence features for the prediction task than other commonly used attribution methods in deep learning. In-depth analyses also revealed the meaningful biological insights generated by the Riboexp framework. Moreover, the application of Riboexp in codon optimization resulted in an increase of protein production by around 31% over the previous state-of-the-art method that models ribosome density. These results have established Riboexp as a powerful and useful computational tool in the studies of translation dynamics and protein synthesis. Availability: The data and code of this study are available on GitHub: https://github.com/Liuxg16/Riboexp. Contact: zengjy321@tsinghua.edu.cn; songsen@tsinghua.edu.cn.
Sprache
Englisch
Identifikatoren
ISSN: 1467-5463
eISSN: 1477-4054
DOI: 10.1093/bib/bbaa412
Titel-ID: cdi_proquest_miscellaneous_2480404340
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX