UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 16 von 46
Datensatz exportieren als...
BibTeX
MRI-based Synthetic CT in the Detection of Structural Lesions in Patients with Suspected Sacroiliitis: Comparison with MRI
Radiology, 2021-02, Vol.298 (2), p.343-349
Jans, Lennart B O
Chen, Min
Elewaut, Dirk
Van den Bosch, Filip
Carron, Philippe
Jacques, Peggy
Wittoek, Ruth
Jaremko, Jacob L
Herregods, Nele
2021
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Jans, Lennart B O
Chen, Min
Elewaut, Dirk
Van den Bosch, Filip
Carron, Philippe
Jacques, Peggy
Wittoek, Ruth
Jaremko, Jacob L
Herregods, Nele
Titel
MRI-based Synthetic CT in the Detection of Structural Lesions in Patients with Suspected Sacroiliitis: Comparison with MRI
Ist Teil von
Radiology, 2021-02, Vol.298 (2), p.343-349
Ort / Verlag
United States
Erscheinungsjahr
2021
Quelle
MEDLINE
Beschreibungen/Notizen
Background Evaluation of structural lesions in the sacroiliac (SI) joints can improve the accuracy for diagnosis of spondyloarthritis. However, structural lesions, such as erosions, are difficult to assess on routine T1-weighted MRI scans. Purpose To determine the diagnostic performance of MRI-based synthetic CT (sCT) in the depiction of erosions, sclerosis, and ankylosis of the SI joints compared with T1-weighted MRI, with CT as the reference standard. Materials and Methods A prospective study (clinical trial registration no. B670201837885) was performed from February 2019 to November 2019. Adults were referred from a tertiary hospital rheumatology outpatient clinic with clinical suspicion of inflammatory sacroiliitis. MRI and CT of the SI joints were performed on the same day. SCT images were generated from MRI scans using a commercially available deep learning-based image synthesis method. Two readers independently recorded if structural lesions (erosions, sclerosis, and ankylosis) were present on T1-weighted MRI, sCT, and CT scans in different reading sessions, with readers blinded to clinical information and other images. Diagnostic performance of sCT and T1-weighted MRI scans were analyzed using generalized estimating equation models, with consensus results of CT as the reference standard. Results Thirty participants were included (16 men, 14 women; mean age, 40 years ± 10 [standard deviation]). Diagnostic accuracy of sCT was higher than that of T1-weighted MRI for erosion (94% vs 86%, = .003), sclerosis (97% vs 81%, < .001), and ankylosis (92% vs 84%, = .04). With sCT, specificity for erosion detection (96% [95% CI: 90, 98] vs 89% [95% CI: 81, 94], = .01] and sensitivity for detection of sclerosis [94% [95% CI: 87, 97] vs 20% [95% CI: 10, 35], < .001] and ankylosis (93% [95% CI: 78, 98] vs 70% [95% CI: 47, 87], = .001) were improved. Conclusion With CT as the reference standard, synthetic CT of the sacroiliac joints has better diagnostic performance in the detection of structural lesions in individuals suspected of having sacroiliitis compared with routine T1-weighted MRI. © RSNA, 2020 See also the editorial by Fritz in this issue.
Sprache
Englisch
Identifikatoren
ISSN: 0033-8419
eISSN: 1527-1315
DOI: 10.1148/radiol.2020201537
Titel-ID: cdi_proquest_miscellaneous_2472110542
Format
–
Schlagworte
Adolescent
,
Adult
,
Female
,
Humans
,
Magnetic Resonance Imaging - methods
,
Male
,
Middle Aged
,
Prospective Studies
,
Reproducibility of Results
,
Sacroiliac Joint - diagnostic imaging
,
Sacroiliitis - diagnostic imaging
,
Sensitivity and Specificity
,
Tomography, X-Ray Computed - methods
,
Young Adult
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX