Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotropic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 μm) membranes with a size deviation of less than 7 μm over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18–21 pA over 100 kHz bandwidth, with 50–150 mV bias) when compared to a silicon-supported (SiS) nanopore (~1.3 nF, and 46–51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectronic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.
•A new approach to create triangular membranes and nanopores on crystalline sapphire wafers.•Reduced capacitance and high-frequency noise for high-speed and low-noise sensing.•Batch-processing compatible and wafer-scale fabrication of nanopore membranes.•Controllable fabrication of triangular shaped membranes as small as ~1 μm.•Noise performance comparable with state-of-art low-noise nanopore chips.