Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 154

Details

Autor(en) / Beteiligte
Titel
Multibatch Cytometry Data Integration for Optimal Immunophenotyping
Ist Teil von
  • The Journal of immunology (1950), 2021-01, Vol.206 (1), p.206-213
Ort / Verlag
United States
Erscheinungsjahr
2021
Quelle
MEDLINE
Beschreibungen/Notizen
  • High-dimensional cytometry is a powerful technique for deciphering the immunopathological factors common to multiple individuals. However, rational comparisons of multiple batches of experiments performed on different occasions or at different sites are challenging because of batch effects. In this study, we describe the integration of multibatch cytometry datasets (iMUBAC), a flexible, scalable, and robust computational framework for unsupervised cell-type identification across multiple batches of high-dimensional cytometry datasets, even without technical replicates. After overlaying cells from multiple healthy controls across batches, iMUBAC learns batch-specific cell-type classification boundaries and identifies aberrant immunophenotypes in patient samples from multiple batches in a unified manner. We illustrate unbiased and streamlined immunophenotyping using both public and in-house mass cytometry and spectral flow cytometry datasets. The method is available as the R package iMUBAC (https://github.com/casanova-lab/iMUBAC).
Sprache
Englisch
Identifikatoren
ISSN: 0022-1767
eISSN: 1550-6606
DOI: 10.4049/jimmunol.2000854
Titel-ID: cdi_proquest_miscellaneous_2464148645

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX