UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Datensatz exportieren als...
BibTeX
Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings
Journal of the science of food and agriculture, 2021-03, Vol.101 (5), p.2027-2041
Sheteiwy, Mohamed S
Shao, Hongbo
Qi, Weicong
Daly, Paul
Sharma, Anket
Shaghaleh, Hiba
Hamoud, Yousef Alhaj
El‐Esawi, Mohamed A
Pan, Ronghui
Wan, Qun
Lu, Haiying
2021
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Sheteiwy, Mohamed S
Shao, Hongbo
Qi, Weicong
Daly, Paul
Sharma, Anket
Shaghaleh, Hiba
Hamoud, Yousef Alhaj
El‐Esawi, Mohamed A
Pan, Ronghui
Wan, Qun
Lu, Haiying
Titel
Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings
Ist Teil von
Journal of the science of food and agriculture, 2021-03, Vol.101 (5), p.2027-2041
Ort / Verlag
Chichester, UK: John Wiley & Sons, Ltd
Erscheinungsjahr
2021
Quelle
Access via Wiley Online Library
Beschreibungen/Notizen
BACKGROUND Jasmonic acid (JA) is an important molecule that has a regulatory effect on many physiological processes in plant growth and development under abiotic stress. This study investigated the effect of 60 μmol L−1 of JA in seed priming (P) at 15 °C in darkness for 24 h, foliar application (F), and/or their combination effect (P + F) on two soybean cultivars – ‘Nannong 99‑6’ (salt tolerant) and ‘Lee 68’ (salt sensitive) – under salinity stress (100 mmol L−1 sodium chloride (NaCl)). RESULTS Salinity stress reduced seedling growth and biomass compared with that in the control condition. Priming and foliar application with JA and/or their combination significantly improved water potential, osmotic potential, water use efficiency, and relative water content of both cultivars under salinity stress. Similarly, seed priming with JA, foliar application of JA, and/or their combination significantly improved the following properties under salinity stress compared with the untreated seedlings: net photosynthetic rate by 68.03%, 59.85%, and 76.67% respectively; transpiration rate by 74.85%, 55.10%, and 80.26% respectively; stomatal conductance by 69.88%, 78.25%, and 26.24% respectively; intercellular carbon dioxide concentration by 61.64%, 40.06%, and 65.79% respectively; and total chlorophyll content by 47.41%, 41.02%, and 55.73% respectively. Soybean plants primed, sprayed with JA, or treated with their combination enhanced the chlorophyll fluorescence, which was damaged by salinity stress. JA treatments improved abscisic acid, gibberellic acid, and JA levels by 60.57%, 62.50% and 52.25% respectively under salt stress compared with those in the control condition. The transcriptional levels of the FeSOD, POD, CAT, and APX genes increased significantly in the NaCl‐stressed seedlings irrespective of JA treatments. Moreover, JA treatment resulted in a reduction of sodium ion concentration and an increase of potassium ion concentrations in the leaf and root of both cultivars regardless of salinity stress. Monodehydroascorbate reductase, dehydroascorbate reductase, and proline contents decreased in the seedlings treated with JA under salinity stress, whereas the ascorbate content increased with JA treatment combined with NaCl stress. CONCLUSION The application of 60 μmol L−1 JA improved plant growth by regulating the interaction between plant hormones and hydrogen peroxide, which may be involved in auxin signaling and stomatal closure under salt stress. These methods could efficiently protect early seedlings and alleviate salt stress damage and provide possibilities for use in improving soybean growth and inducing tolerance against excessive soil salinity. © 2020 Society of Chemical Industry
Sprache
Englisch
Identifikatoren
ISSN: 0022-5142
eISSN: 1097-0010
DOI: 10.1002/jsfa.10822
Titel-ID: cdi_proquest_miscellaneous_2444379036
Format
–
Schlagworte
Abiotic stress
,
Abscisic acid
,
antioxidant enzymes
,
Ascorbic acid
,
Carbon dioxide
,
Carbon dioxide concentration
,
Chlorophyll
,
Chlorophyll - metabolism
,
Conductance
,
Cultivars
,
Cyclopentanes - pharmacology
,
Damage
,
Darkness
,
Fluorescence
,
Foliar applications
,
gene expression
,
Gibberellic acid
,
Glycine max
,
Glycine max - drug effects
,
Glycine max - growth & development
,
Glycine max - physiology
,
Hormones
,
Hydrogen peroxide
,
Ion concentration
,
Jasmonic acid
,
Moisture content
,
Osmotic potential
,
Oxylipins - pharmacology
,
Photosynthesis
,
Physiological effects
,
Plant growth
,
Plant Growth Regulators - pharmacology
,
Plant Leaves - drug effects
,
Plant Leaves - growth & development
,
Plant Leaves - physiology
,
Potassium
,
Potassium - metabolism
,
Priming
,
Proline
,
Reductases
,
Resistance
,
Salinity
,
Salinity effects
,
salinity stress
,
Salinity tolerance
,
Salt
,
Salt Stress - drug effects
,
Salts
,
Seedlings
,
Seedlings - drug effects
,
Seedlings - growth & development
,
Seedlings - physiology
,
Seeds
,
Seeds - drug effects
,
Seeds - growth & development
,
Seeds - physiology
,
Sodium chloride
,
Soil salinity
,
soybean
,
Soybeans
,
Stomata
,
Stomatal conductance
,
Stress
,
Stress, Physiological - drug effects
,
Transcription
,
Transpiration
,
Water content
,
Water potential
,
Water use
,
Water use efficiency
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX