Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 149

Details

Autor(en) / Beteiligte
Titel
Metagenomic profiling of ammonia- and methane-oxidizing microorganisms in two sequential rapid sand filters
Ist Teil von
  • Water research (Oxford), 2020-10, Vol.185, p.116288-116288, Article 116288
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Microbial distribution was strongly influenced by sampling location within the DWTP.•Clade A comammox Nitrospirawere the dominant nitrifiers in the primary sand filter.•Clade B was most abundant in samples from wall biofilm and the secondary filter.•A novel Methylophilaceae-affiliated methanotroph dominated the primary sand filter. Elevated concentrations of ammonium and methane in groundwater are often associated with microbiological, chemical and sanitary problems during drinking water production and distribution. To avoid their accumulation, raw water in the Netherlands and many other countries is purified by sand filtration. These drinking water filtration systems select for microbial communities that mediate the biodegradation of organic and inorganic compounds. In this study, the top layers and wall biofilm of a Dutch drinking water treatment plant (DWTP) were sampled from the filtration units of the plant over three years. We used high-throughput sequencing in combination with differential coverage and sequence composition-based binning to recover 56 near-complete metagenome-assembled genomes (MAGs) with an estimated completion of ≥70% and with ≤10% redundancy. These MAGs were used to characterize the microbial communities involved in the conversion of ammonia and methane. The methanotrophic microbial communities colonizing the wall biofilm (WB) and the granular material of the primary rapid sand filter (P-RSF) were dominated by members of the Methylococcaceae and Methylophilaceae. The abundance of these bacteria drastically decreased in the secondary rapid sand filter (S-RSF) samples. In all samples, complete ammonia-oxidizing (comammox) Nitrospira were the most abundant nitrifying guild. Clade A comammox Nitrospira dominated the P-RSF, while clade B was most abundant in WB and S-RSF, where ammonium concentrations were much lower. In conclusion, the knowledge obtained in this study contributes to understanding the role of microorganisms in the removal of carbon and nitrogen compounds during drinking water production. We furthermore found that drinking water treatment plants represent valuable model systems to study microbial community function and interaction. [Display omitted]
Sprache
Englisch
Identifikatoren
ISSN: 0043-1354
eISSN: 1879-2448
DOI: 10.1016/j.watres.2020.116288
Titel-ID: cdi_proquest_miscellaneous_2435528797

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX