Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 42

Details

Autor(en) / Beteiligte
Titel
Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort
Ist Teil von
  • Journal of neuropathology and experimental neurology, 2020-09, Vol.79 (9), p.950-958
Ort / Verlag
England: Oxford University Press
Erscheinungsjahr
2020
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
  • Abstract Diabetes mellitus is a risk factor for dementia, and nonenzymatic glycosylation of macromolecules results in formation of advanced glycation end-products (AGEs). We determined the variation in AGE formation in brains from the Cognitive Function and Ageing Study population-representative neuropathology cohort. AGEs were measured on temporal neocortex by enzyme-linked immunosorbent assay (ELISA) and cell-type specific expression on neurons, astrocytes and endothelium was detected by immunohistochemistry and assessed semiquantitatively. Fifteen percent of the cohort had self-reported diabetes, which was not significantly associated with dementia status at death or neuropathology measures. AGEs were expressed on neurons, astrocytes and endothelium and overall expression showed a positively skewed distribution in the population. AGE measures were not significantly associated with dementia. AGE measured by ELISA increased with Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neurofibrillary tangle score (p = 0.03) and Thal Aβ phase (p = 0.04), while AGE expression on neurons (and astrocytes), detected immunohistochemically, increased with increasing Braak tangle stage (p < 0.001), CERAD tangle score (p = 0.002), and neuritic plaques (p = 0.01). Measures of AGE did not show significant associations with cerebral amyloid angiopathy, microinfarcts or neuroinflammation. In conclusion, AGE expression increases with Alzheimer’s neuropathology, particular later stages but is not independently associated with dementia. AGE formation is likely to be important for impaired brain cell function in aging and Alzheimer’s.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX