Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The Newton method for solving the Theodorsen integral equation
Ist Teil von
Journal of computational and applied mathematics, 1986-02, Vol.14 (1), p.19-30
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
1986
Quelle
Elsevier Journal Backfiles on ScienceDirect (DFG Nationallizenzen)
Beschreibungen/Notizen
The Newton method for the solution of the Theodorsen integral equation in conformal mapping is studied. One step of this method consists of solving a linear integral equation, the solution of which is given explicitly as the result of a Riemann-Hilbert problem. Quadratic convergence of the Newton method is established under certain assumptions. Whereas in other methods a so-called ϵ-condition with
ϵ < 1 is required to hold, our method converges also for
ϵ ⩾ 1. We will also present a numerical implementation in which the result of one step of the Newton method is approximately by a vector in
R
2N
which can be computed with 2
N log
N + O(
N) multiplications. In comparison, one step of the Newton method for the discrete Theodorsen equation requires O(
N
3) multiplications.