Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 33060

Details

Autor(en) / Beteiligte
Titel
White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater
Ist Teil von
  • The Science of the total environment, 2020-11, Vol.741, p.140483-140483, Article 140483
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • It is well recognized that filter media play a crucial role in constructed wetlands (CWs) for decontamination of phosphorus (P)-rich wastewater. This study investigates the suitability of raw white hard clam shells (WHC) and white hard clam shells thermally modified at 800 °C (WHC-M800) as potential media to enhance P treatment performance in CWs. The results indicated that both WHC and WHC-M800 displayed appropriate physicochemical properties, such as high porosity, excellent hydraulic conductivity, and rich Ca content. WHC-M800 exhibited a superior P adsorption capacity (38.7 mg/g) to WHC (12.8 mg/g). However, the practical utilization of WHC-M800 as filter media in CWs may be compromised, due to certain limitations, for example: extremely high pH values in the post-adsorption solutions; high weight losses during calcination and adsorption processes; low mechanical strength; and intensive energy consumption. In contrast, the WHC demonstrated significant advantages of reasonably high P adsorption capacity, locally abundant availability, low cost, and marginal side effects. The fractionation of inorganic P of WHC and WHC-M800 revealed that Ca-bounded P was the most dominant binding form, followed by loosely bound P, Fe-P, occluded P, and Al-P. The present study demonstrates that recycling of WHC shells as a potential substrate in CWs provides a feasible method for upgrading P removal in CWs. Additionally, it helps to reduce waste WHC shells in a simple, cheap, and eco-friendly way, thus can double environmental benefits. [Display omitted] •WHC and WHC-M800 were studied as wetland filter media to control P pollution.•WHC-M800 exhibited a markedly higher qmax value (38.7 mg/g) than WHC (12.8 mg/g).•WHC-M800 was not a potential CWs filter material due to significant limitations.•P sorption by WHC fitted Langmuir isotherm and Pseudo-first-order kinetic models.•The P removal pathway of WHC was mainly chemisorption in the form of Ca-P binding.
Sprache
Englisch
Identifikatoren
ISSN: 0048-9697
eISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2020.140483
Titel-ID: cdi_proquest_miscellaneous_2420135439

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX