Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 15

Details

Autor(en) / Beteiligte
Titel
GREMA: modelling of emulated gene regulatory networks with confidence levels based on evolutionary intelligence to cope with the underdetermined problem
Ist Teil von
  • Bioinformatics, 2020-06, Vol.36 (12), p.3833-3840
Ort / Verlag
England: Oxford University Press
Erscheinungsjahr
2020
Quelle
MEDLINE
Beschreibungen/Notizen
  • Abstract Motivation Non-linear ordinary differential equation (ODE) models that contain numerous parameters are suitable for inferring an emulated gene regulatory network (eGRN). However, the number of experimental measurements is usually far smaller than the number of parameters of the eGRN model that leads to an underdetermined problem. There is no unique solution to the inference problem for an eGRN using insufficient measurements. Results This work proposes an evolutionary modelling algorithm (EMA) that is based on evolutionary intelligence to cope with the underdetermined problem. EMA uses an intelligent genetic algorithm to solve the large-scale parameter optimization problem. An EMA-based method, GREMA, infers a novel type of gene regulatory network with confidence levels for every inferred regulation. The higher the confidence level is, the more accurate the inferred regulation is. GREMA gradually determines the regulations of an eGRN with confidence levels in descending order using either an S-system or a Hill function-based ODE model. The experimental results showed that the regulations with high-confidence levels are more accurate and robust than regulations with low-confidence levels. Evolutionary intelligence enhanced the mean accuracy of GREMA by 19.2% when using the S-system model with benchmark datasets. An increase in the number of experimental measurements may increase the mean confidence level of the inferred regulations. GREMA performed well compared with existing methods that have been previously applied to the same S-system, DREAM4 challenge and SOS DNA repair benchmark datasets. Availability and implementation All of the datasets that were used and the GREMA-based tool are freely available at https://nctuiclab.github.io/GREMA. Supplementary information Supplementary data are available at Bioinformatics online.
Sprache
Englisch
Identifikatoren
ISSN: 1367-4803
eISSN: 1460-2059, 1367-4811
DOI: 10.1093/bioinformatics/btaa267
Titel-ID: cdi_proquest_miscellaneous_2402423502

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX