Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 29

Details

Autor(en) / Beteiligte
Titel
Ependymoma and pilocytic astrocytoma: Differentiation using radiomics approach based on machine learning
Ist Teil von
  • Journal of clinical neuroscience, 2020-08, Vol.78, p.175-180
Ort / Verlag
Scotland: Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • •A radiomics approach is applied for pediatric posterior fossa tumor differentiation.•300 multimodal features are extracted to describe the statistics of the MRIs.•Machine learning methods are combined for effective assisted clinical diagnosis. Mandatory accurate and specific diagnosis demands have brought about increased challenges for radiologists in pediatric posterior fossa tumor prediction and prognosis. With the development of high-performance computing and machine learning technologies, radiomics provides increasing opportunities for clinical decision-making. Several studies have applied radiomics as a decision support tool in intracranial tumors differentiation. Here we seek to achieve preoperative differentiation between ependymoma (EP) and pilocytic astrocytoma (PA) using radiomics analysis method based on machine learning. A total of 135 Magnetic Resonance Imaging (MRI) slices are divided into training sets and validation sets. Three kinds of radiomics features, including Gabor transform, texture and wavelet transform based ones are used to obtain 300 multimodal features. Kruskal–Wallis test score (KWT) and support vector machines (SVM) are applied for feature selection and tumor differentiation. The performance is investigated via accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) analysis. Results show that the accuracy, sensitivity, specificity, and AUC of the selected feature set are 0.8775, 0.9292, 0.8000, and 0.8646 respectively, having no significantdifferencescomparedwiththe overall feature set. For different types of features, texture features yield the best differentiation performance and the significance analysis results are consistent with this. Our study demonstrates texture features perform better than the other features. The radiomics approach based on machine learning is efficient for pediatric posterior fossa tumors differentiation and could enhance the application of radiomics methods for assisted clinical diagnosis.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX