Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 90

Details

Autor(en) / Beteiligte
Titel
Cavitation characteristics of flowing low and high boiling-point perfluorocarbon phase-shift nanodroplets during focused ultrasound exposures
Ist Teil von
  • Ultrasonics sonochemistry, 2020-07, Vol.65, p.105060-105060, Article 105060
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Compare cavitation of flowing low and high boiling-point phase-shift NDs during FUS.•PFP showed a higher increase in cavitation than PFH at lower pressure.•Higher amplitude in high frequency for NDs in flow than in static, notably for PFH.•As flow rate increased, ICD for PFH increased and then dropped, for PFP increased. This work investigated and compared the dynamic cavitation characteristics between low and high boiling-point phase-shift nanodroplets (NDs) under physiologically relevant flow conditions during focused ultrasound (FUS) exposures at different peak rarefactional pressures. A passive cavitation detection (PCD) system was used to monitor cavitation activity during FUS exposure at various acoustic pressure levels. Root mean square (RMS) amplitudes of broadband noise, spectrograms of the passive cavitation detection signals, and normalized inertial cavitation dose (ICD) values were calculated. Cavitation activity of low-boiling-point perfluoropentane (PFP) NDs and high boiling-point perfluorohexane (PFH) NDs flowing at in vitro mean velocities of 0–15 cm/s were compared in a 4-mm diameter wall-less vessel in a transparent tissue-mimicking phantom. In the static state, both types of phase-shift NDs exhibit a sharp rise in cavitation intensity during initial FUS exposure. Under flow conditions, cavitation activity of the PFH NDs reached the steady state less rapidly compared to PFP NDs under the lower acoustic pressure (1.35 MPa); at the higher acoustic pressure (1.65 MPa), the RMS amplitude increased more sharply during the initial FUS exposure period. In particular, the RMS-time curves of the PFP NDs shifted upward as the mean flow velocity increased from 0 to 15 cm/s; the RMS amplitude of the PFH ND solution increased from 0 to 10 cm/s and decreased at 15 cm/s. Moreover, amplitudes of the echo signal for the low boiling-point PFP NDs were higher compared to the high boiling-point PFH NDs in the lower frequency range, whereas the inverse occurred in the higher frequency range. Both PFP and PFH NDs showed increased cavitation activity in the higher frequency under the flow condition compared to the static state, especially PFH NDs. At 1.65 MPa, normalized ICD values for PFH increased from 0.93 ± 0.03 to 0.96 ± 0.04 and from 0 to 10 cm/s, then decreased to 0.86 ± 0.05 at 15 cm/s. This work contributes to our further understanding of cavitation characteristics of phase-shift NDs under physiologically relevant flow conditions during FUS exposure. In addition, the results provide a reference for selecting suitable phase-shift NDs to enhance the efficiency of cavitation-mediated ultrasonic applications.
Sprache
Englisch
Identifikatoren
ISSN: 1350-4177
eISSN: 1873-2828
DOI: 10.1016/j.ultsonch.2020.105060
Titel-ID: cdi_proquest_miscellaneous_2381620692

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX