Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 97
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.2606-2609
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Automatic Audio-Based Classification of Patient Inhaler Use: A Pharmacy Based Study
Ist Teil von
  • 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.2606-2609
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
  • Chronic respiratory diseases may be controlled through the delivery of medication to the airways and lungs using an inhaler. However, adherence to correct inhaler technique is poor, which impedes patients from receiving maximum clinical benefit from their medication. In this study, the Inhaler Compliance Assessment device was employed to record audio of patients using a Diskus dry powder inhaler. An algorithm that classifies inhaler sounds (blister, inhalation, interference) was developed to automatically assess patient adherence from these inhaler audio recordings. The presented algorithm employed audio-based signal processing methods and statistical modeling in the form of quadratic discriminant analysis (QDA). A total of 350 audio recordings were obtained from 70 patients. The acquired audio dataset was split evenly for training and testing. A total accuracy of 85.35% was obtained (testing dataset) for this 3-class classification system. A sensitivity of 89.22% and 70% was obtained for inhalation and blister detection respectively. This approach may have significant clinical impact by providing healthcare professionals with an efficient, objective method of monitoring patient adherence to inhaler treatment.
Sprache
Englisch
Identifikatoren
ISSN: 1557-170X
eISSN: 1558-4615, 2694-0604
DOI: 10.1109/EMBC.2019.8857132
Titel-ID: cdi_proquest_miscellaneous_2341633528

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX