Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Construction of 3D Electronic/Ionic Conduction Networks for All‐Solid‐State Lithium Batteries
Ist Teil von
Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (50), p.e1905849-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Access via Wiley Online Library
Beschreibungen/Notizen
High and balanced electronic and ionic transportation networks with nanoscale distribution in solid‐state cathodes are crucial to realize high‐performance all‐solid‐state lithium batteries. Using Cu2SnS3 as a model active material, such a kind of solid‐state Cu2SnS3@graphene‐Li7P3S11 nanocomposite cathodes are synthesized, where 5–10 nm Cu2SnS3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li7P3S11 electrolytes uniformly coat on the surface of Cu2SnS3@graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple‐phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano‐Cu2SnS3. The Cu2SnS3@graphene‐Li7P3S11 cathode layer with 2.0 mg cm−2 loading in all‐solid‐state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g−1 at 100 mA g−1 and retains 732.0 mAh g−1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg−1 based on the total mass of Cu2SnS3@graphene‐Li7P3S11 composite based cathode. Moreover, it exhibits excellent rate capability and high‐rate cycling stability, showing reversible capacity of 363.5 mAh g−1 at 500 mA g−1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all‐solid‐state lithium batteries.
Using Cu2SnS3 as a model active cathode material, Cu2SnS3@graphene‐Li7P3S11 nanocomposite cathode with nanoscaled 3D electronic/ionic conduction networks is achieved. The large amount of nanoscale triple‐phase boundaries between active material, carbon, and solid electrolyte can significantly enhance interfacial contact, reduce stress/strain, and maintain the structural integrity of electrode material, resulting in high power density and long cycle life all‐solid‐state lithium batteries.