Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 41

Details

Autor(en) / Beteiligte
Titel
How accurate is density functional theory in predicting spin density? An insight from the prediction of hyperfine coupling constants
Ist Teil von
  • Journal of molecular modeling, 2020-01, Vol.26 (1), p.10-10, Article 10
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Electron paramagnetic resonance (EPR) spectroscopy has been proven to be an important technique for studying paramagnetic systems. Probably, the most accessible EPR parameter and the one that provides a significant amount of information about molecular structure and spin density is the hyperfine coupling constant (HFCC). Hence, accurate quantum-chemical modeling of HFCCs is frequently essential to the adequate interpretation of EPR spectra. It requires the precise spin density, which is the difference between the densities of α- and β-electrons, and thus, its quality is expected to reflect the quality of the total electron density. The question of which approximate exchange-correlation density functional yields sufficiently accurate HFCCs, and thus, the spin density remains open. To assess the performance of well-established density functionals for calculating HFCCs, we used a series of 26 small paramagnetic species and compared the obtained results to the CCSD reference values. The performance of DFT was also tested on EPR-studied o-semiquinone radical interacting with water molecules and Mg 2+ cation. The HFCCs were additionally calculated by the DLPNO-CCSD method, and this wave function-based technique was found superior to all functionals we tested. Although some functionals were found, on average, to be fairly efficient, we found that the most accurate functional is system-dependent, and therefore, the DLPNO-CCSD method should be preferred for theoretical investigations of the HFCCs and spin density.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX