Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 29

Details

Autor(en) / Beteiligte
Titel
Diversity of amino acid substitutions in PmrCAB associated with colistin resistance in clinical isolates of Acinetobacter baumannii
Ist Teil von
  • International journal of antimicrobial agents, 2020-03, Vol.55 (3), p.105862-105862, Article 105862
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • •Novel amino acid substitutions in PmrCAB were associated with colistin resistance.•Mutations in pmrCAB were associated with increased pmrC expression.•Combinations of mutations in the pmr genes might have an additive effect.•ISAba1 upstream of eptA is not necessarily associated with colistin resistance. This study aimed to investigate the mechanisms of colistin resistance in 64 Acinetobacter baumannii isolates obtained from patients with ventilator-associated pneumonia hospitalised in Greece, Italy and Spain. In total, 31 A. baumannii isolates were colistin-resistant. Several novel amino acid substitutions in PmrCAB were found in 27 colistin-resistant A. baumannii. Most substitutions were detected in PmrB, indicating the importance of the histidine kinase for colistin resistance. In two colistin-resistant isolates, 93 amino acid changes were observed in PmrCAB compared with A. baumannii ACICU, and homologous recombination across different clonal lineages was suggested. Analysis of gene expression revealed increased pmrC expression in isolates harbouring pmrCAB mutations. Complementation of A. baumannii ATCC 19606 and ATCC 17978 with a pmrAB variant revealed increased pmrC expression but unchanged colistin MICs, indicating additional unknown factors associated with colistin resistance. Moreover, a combination of PmrB and PmrC alterations was associated with very high colistin MICs, suggesting accumulation of mutations as the mechanism for high-level resistance. The pmrC homologue eptA was detected in 29 colistin-susceptible and 26 colistin-resistant isolates. ISAba1 was found upstream of eptA in eight colistin-susceptible and one colistin-resistant isolate and eptA was disrupted by ISAba125 in two colistin-resistant isolates. Whilst in most isolates an association of eptA with colistin resistance was excluded, in one isolate an amino acid substitution in EptA (R127L) combined with a point mutation in ISAba1 upstream of eptA contributed to elevated colistin MICs. This study helps to gain an insight into the diversity and complexity of colistin resistance in A. baumannii.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX