Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 727

Details

Autor(en) / Beteiligte
Titel
Additional Lithium Storage on Dynamic Electrode Surface by Charge Redistribution in Inactive Ru Metal
Ist Teil von
  • Small (Weinheim an der Bergstrasse, Germany), 2020-01, Vol.16 (1), p.e1905868-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2020
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • Beyond a traditional view that metal nanoparticles formed upon electrochemical reaction are inactive against lithium, recently their electrochemical participations are manifested and elucidated as catalytic and interfacial effects. Here, ruthenium metal composed of ≈5 nm nanoparticles is prepared and the pure ruthenium as a lithium‐ion battery anode for complete understanding on anomalous lithium storage reaction mechanism is designed. In particular, the pure metal electrode is intended for eliminating the electrochemical reaction‐derived Li2O phase accompanied by catalytic Li2O decomposition and the interfacial lithium storage at Ru/Li2O phase boundary, and thereby focusing on the ruthenium itself in exploring its electrochemical reactivity. Intriguingly, unusual lithium storage not involving redox reactions with electron transfer but leading to lattice expansion is identified in the ruthenium electrode. Size‐dependent charge redistribution at surface enables additional lithium adsorption to occur on the inactive but more environmentally sensitive nanoparticles, providing innovative insight into dynamic electrode environments in rechargeable lithium chemistry. Pure ruthenium metal composed of ≈5 nm primary particles is designed as an anode material for lithium‐ion battery. Additional lithium storage by charge redistribution on the inactive but environmentally sensitive nanoparticles is identified beyond traditional view that metal nanoparticles are inactive against lithium. This work shed light on inactive nanostructured materials in developing high‐capacity electrode for next generation batteries.
Sprache
Englisch
Identifikatoren
ISSN: 1613-6810
eISSN: 1613-6829
DOI: 10.1002/smll.201905868
Titel-ID: cdi_proquest_miscellaneous_2320640677

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX