Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin
Ist Teil von
Pesticide biochemistry and physiology, 2019-10, Vol.160, p.127-135
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2019
Quelle
ScienceDirect
Beschreibungen/Notizen
Environmental xenobiotics can influence the tolerance of insects to chemical insecticides. Heavy metals are widespread distributed, can be easily bio-accumulated in plants and subsequently within phytophagous insects via the food chains. However, less attention has been paid to the effect of heavy metal exposure on their insecticide tolerance. In this study, pre-exposure of copper (Cu, 25–100 mg kg−1) significantly enhanced the subsequent tolerance of Spodoptera litura to β-cypermethrin, a widely used pyrethroid insecticide in crop field. Cytochrome P450 monooxygenases (CYPs) activities were cross-induced in larvae exposed to Cu and β-cypermethrin, while the activities of glutathione S-transferase (GST) and carboxylesterase (CarE) were not affected. Application of piperonyl butoxide (PBO), a P450 synergist, effectively impaired the tolerance to β-cypermethrin in Cu-exposed S. litura larvae with a synergistic ratio of 1.72, indicating that P450s contribute to larval tolerance to β-cypermethrin induced by Cu exposure. Among the four CYP6AB family genes examined, only larval midgut-specific CYP6AB12 was found to be cross-induced by Cu and β-cypermethrin. RNA interference (RNAi)-mediated silencing of CYP6AB12 effectively decreased the mRNA levels of the target gene, and significantly reduced the larval tolerance to β-cypermethrin following exposure to Cu. These results showed that pre-exposure of heavy metal Cu enhanced larval tolerance to β-cypermethrin in S. litura, possibly through the cross-induction of P450s. Our findings provide new insights on the relationship between heavy metals and chemical insecticides that may benefit both the risk evaluation of heavy metal contamination and development of pest management strategies.
[Display omitted]
•Cu exposure enhanced the subsequent tolerance of Spodoptera litura to β-cypermethrin.•P450 activities were cross-induced in larvae exposed to Cu and β-cypermethrin.•RNAi was used to study the functions of SlCYP6AB12.•Cu-induced up-regulation of SlCYP6AB12 enhanced the larval tolerance to β-cypermethrin.