Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination
Ist Teil von
International journal of antimicrobial agents, 2020-01, Vol.55 (1), p.105799-105799, Article 105799
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
•Antifungal resistance has been slowly increasing among certain yeast species.•Emergence of yeast species with intrinsic resistance to antifungals has been observed.•Non-susceptibility to echinocandins ranged from 0.0–2.3% and was highest in Candida glabrata.•Elevated fluconazole MICs were noted for less common Candida and other yeast species.•Azole resistance in C. parapsilosis and C. tropicalis was mostly due to Erg11 Y132F alterations.
This study evaluated the activity of echinocandins, azoles and amphotericin B against Candida spp. isolates and other yeasts and characterised azole resistance mechanisms in Candida parapsilosis and Candida tropicalis. Invasive Candida spp. isolates (n = 2936) collected in 60 hospitals worldwide during 2016–2017 underwent antifungal susceptibility testing by broth microdilution. Azole-resistant C. parapsilosis and C. tropicalis were submitted to qPCR for ERG11, CDR1 and MDR1, and the whole genome sequence was analysed. Results of non-susceptibility to echinocandins ranged from 0.0–2.3%, being highest in Candida glabrata. More than 99.0% of the Candida albicans isolates were susceptible to both fluconazole and voriconazole. Fluconazole resistance in C. glabrata was 6.5% overall, being highest in the USA (13.0%). Resistance to voriconazole in Candida krusei was only noted in the USA (5.0%). Azoles inhibited 89.1–91.6% of C. parapsilosis isolates, with most resistant isolates noted in Europe (15.1%), including 36 isolates from Italy (three hospitals), of which 34 harboured Erg11 Y132F mutations and overexpressed MDR1. Azole non-wild-type C. tropicalis (7/227) were found in five countries: 3 isolates from Thailand had the same Erg11 Y132F alteration. Fluconazole non-wild-type isolates were noted among 3/77 (3.9%) Candida dubliniensis, 4/17 (23.5%) Candida guilliermondii, 4/47 (8.5%) Candida lusitaniae and other less common yeast species. Echinocandin use has been recommended over fluconazole for invasive Candida infections. However, azoles are still active against the most common Candida spp. and resistance appears to be restricted to certain geographic regions and associated with Erg11 Y132 alterations in C. parapsilosis and C. tropicalis.