Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 217
Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1903452-n/a
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer
Ist Teil von
  • Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1903452-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Wiley-Blackwell Full Collection
Beschreibungen/Notizen
  • Oriented liquid crystal networks (LCNs) can undergo reversible shape change at the macroscopic scale upon an order–disorder phase transition of the mesogens. This property is explored for developing soft robots that can move under external stimuli, such as light in most studies. Herein, electrically driven soft robots capable of executing various types of biomimetic locomotion are reported. The soft robots are composed of a uniaxially oriented LCN strip, a laminated Kapton layer, and thin resistive wires embedded in between. Taking advantage of the combined attributes of the actuator, namely, easy processing, reprogrammability, and reversible shape shift between two 3D shapes at electric power on and off state, the concept of a “Janus” soft robot is demonstrated, which is built from a single piece of the material and has two parts undergoing opposite deformations simultaneously under a uniform stimulation. In addition to complex shape morphing such as the movement of oarfish and sophisticated devices like self‐locking grippers, electrically powered “Janus” soft robots can accomplish versatile locomotion modes, including crawling on flat surfaces through body arching up and straightening down, crawling inside tubes through body stretching and contraction, walking like four‐leg animals, and human‐like two‐leg walking while pushing a load forward. Soft robots based on liquid crystal polymers are built to possess two parts capable of simultaneous and opposite deformations upon an order–disorder phase transition. This design enables various electrically powered locomotion modes, including moving on flat surface through body arching up–straightening down, crawling in a tunnel‐like tube through body stretching–contraction, four‐leg walking, and two‐leg walking while pushing a load.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX