Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
International journal for computer assisted radiology and surgery, 2019-09, Vol.14 (9), p.1541-1551
Ort / Verlag
Cham: Springer International Publishing
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
Purpose
For a perfectly plane symmetric object, we can find two views—mirrored at the plane of symmetry—that will yield the exact same image of that object. In consequence, having one image of a plane symmetric object and a calibrated camera, we automatically have a second, virtual image of that object if the 3-D location of the symmetry plane is known.
Methods
We propose a method for estimating the symmetry plane from a set of projection images as the solution of a consistency maximization based on epipolar consistency. With the known symmetry plane, we can exploit symmetry to estimate in-plane motion by introducing the X-trajectory that can be acquired with a conventional short-scan trajectory by simply tilting the acquisition plane relative to the plane of symmetry.
Results
We inspect the symmetry plane estimation on a real scan of an anthropomorphic human head phantom and show the robustness using a synthetic dataset. Further, we demonstrate the advantage of the proposed method for estimating in-plane motion using the acquired projection data.
Conclusion
Symmetry breakers in the human body are widely used for the detection of tumors or strokes. We provide a fast estimation of the symmetry plane, robust to outliers, by computing it directly from a set of projections. Further, by coupling the symmetry prior with epipolar consistency, we overcome inherent limitations in the estimation of in-plane motion.