Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 75

Details

Autor(en) / Beteiligte
Titel
Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System: Phantom and Bioheat Model
Ist Teil von
  • Neuromodulation (Malden, Mass.), 2021-12, Vol.24 (8), p.1327-1335
Ort / Verlag
Hoboken, USA: John Wiley & Sons, Inc
Erscheinungsjahr
2021
Quelle
MEDLINE
Beschreibungen/Notizen
  • Objective A recently introduced Spinal Cord Stimulation (SCS) system operates at 10 kHz, faster than conventional SCS systems, resulting in significantly more power delivered to tissues. Using a SCS heat phantom and bioheat multi‐physics model, we characterized tissue temperature increases by this 10 kHz system. We also evaluated its Implanted Pulse Generator (IPG) output compliance and the role of impedance in temperature increases. Materials and Methods The 10 kHz SCS system output was characterized under resistive loads (1–10 KΩ). Separately, fiber optic temperature probes quantified temperature increases (ΔTs) around the SCS lead in specially developed heat phantoms. The role of stimulation Level (1–7; ideal pulse peak‐to‐peak of 1–7mA) was considered, specifically in the context of stimulation current Root Mean Square (RMS). Data from the heat phantom were verified with the SCS heat‐transfer models. A custom high‐bandwidth stimulator provided 10 kHz pulses and sinusoidal stimulation for control experiments. Results The 10 kHz SCS system delivers 10 kHz biphasic pulses (30‐20‐30 μs). Voltage compliance was 15.6V. Even below voltage compliance, IPG bandwidth attenuated pulse waveform, limiting applied RMS. Temperature increased supralinearly with stimulation Level in a manner predicted by applied RMS. ΔT increases with Level and impedance until stimulator compliance was reached. Therefore, IPG bandwidth and compliance dampen peak heating. Nonetheless, temperature increases predicted by bioheat multi‐physic models (ΔT = 0.64°C and 1.42°C respectively at Level 4 and 7 at the cervical segment; ΔT = 0.68°C and 1.72°C respectively at Level 4 and 7 at the thoracic spinal cord)–within ranges previously reported to effect neurophysiology. Conclusions Heating of spinal tissues by this 10 kHz SCS system theoretically increases quickly with stimulation level and load impedance, while dampened by IPG pulse bandwidth and voltage compliance limitations. If validated in vivo as a mechanism of kHz SCS, bioheat models informed by IPG limitations allow prediction and optimization of temperature changes.
Sprache
Englisch
Identifikatoren
ISSN: 1094-7159
eISSN: 1525-1403
DOI: 10.1111/ner.12980
Titel-ID: cdi_proquest_miscellaneous_2245644613

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX