Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 108
Behavioural brain research, 2019-09, Vol.369, p.111936-111936, Article 111936
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
En route to delineating hippocampal roles in spatial learning
Ist Teil von
  • Behavioural brain research, 2019-09, Vol.369, p.111936-111936, Article 111936
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • [Display omitted] The precise role played by the hippocampus in spatial learning tasks, such as the Morris Water Maze (MWM), is not fully understood. One theory is that the hippocampus is not required for ‘knowing where’ but rather is crucial in ‘getting there’. To explore this idea in the MWM, we manipulated ‘getting there’ variables, such as passive transport or active swimming towards the hidden platform, in rats with and without hippocampal lesions. Our results suggested that for intact rats, self-motion cues enroute to the hidden goal were a necessary component for ‘place learning’ to progress. Specifically, intact rats could not learn the hidden goal location, when passively transported to it, despite extensive training. However, when rats were either given hippocampal lesions, or placed in a light-tight box during transportation to the hidden goal, passive-placement spatial learning was facilitated. In a subsequent experiment, the ‘getting there’ component of place navigation was simplified, via the placement of two overhead landmarks, one of which served as a beacon. When ‘getting there’ was made easier in this way, hippocampal lesions did not induce deficits in ‘knowing where’ the goal was. In fact, similar to the facilitation observed in passive-placement spatial learning, hippocampal lesions improved landmark learning relative to controls. Finally, demonstrating that our lesions were sufficiently deleterious, hippocampal-lesioned rats were impaired, as predicted, in an environmental-boundary based learning task. We interpret these results in terms of competition between multiple memory systems, and the importance of self-generated motion cues in hippocampal spatial mapping.
Sprache
Englisch
Identifikatoren
ISSN: 0166-4328
eISSN: 1872-7549
DOI: 10.1016/j.bbr.2019.111936
Titel-ID: cdi_proquest_miscellaneous_2231996510

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX