Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 5966
Angewandte Chemie (International ed.), 2019-07, Vol.58 (28), p.9459-9463
International ed. in English, 2019

Details

Autor(en) / Beteiligte
Titel
Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature
Ist Teil von
  • Angewandte Chemie (International ed.), 2019-07, Vol.58 (28), p.9459-9463
Auflage
International ed. in English
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Atomic‐thick interfacial dominated bifunctional catalyst NiO/CoO transition interfacial nanowires (TINWs) with abundant defect sites display high electroactivity and durability in the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations show that the excellent OER/ORR performance arises from the electron‐rich interfacial region coupled with defect sites, thus enabling a fast‐redox rate with lower activation barrier for fast electron transfer. When assembled as an air‐electrode, NiO/CoO TINWs delivered the high specific capacity of 842.58 mAh gZn−1, the large energy density of 996.44 Wh kgZn−1 with long‐time stability of more than 33 h (25 °C), and superior performance at low (−10 °C) and high temperature (80 °C). An oxygen removing and re‐doping process applied to NiCo2O4 nanowires (NW) gives so‐called NiO/CoO transition interfacial nanowires (TINWs) with an abundance of interfacial defects. The atomic‐thick interface makes NiO/CoO TINWs highly efficient and stable bifunctional oxygen evolution/oxygen reduction reaction (OER/ORR) catalysts, and gives a wide working temperature range (−10 to 80 °C) for portable Zn–air batteries.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX