Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 2380
IEEE transactions on pattern analysis and machine intelligence, 2020-06, Vol.42 (6), p.1333-1347
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Generic Primitive Detection in Point Clouds Using Novel Minimal Quadric Fits
Ist Teil von
  • IEEE transactions on pattern analysis and machine intelligence, 2020-06, Vol.42 (6), p.1333-1347
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2020
Quelle
IEEE Xplore (IEEE/IET Electronic Library - IEL)
Beschreibungen/Notizen
  • We present a novel and effective method for detecting 3D primitives in cluttered, unorganized point clouds, without axillary segmentation or type specification. We consider the quadric surfaces for encapsulating the basic building blocks of our environments - planes, spheres, ellipsoids, cones or cylinders, in a unified fashion. Moreover, quadrics allow us to model higher degree of freedom shapes, such as hyperboloids or paraboloids that could be used in non-rigid settings. We begin by contributing two novel quadric fits targeting 3D point sets that are endowed with tangent space information. Based upon the idea of aligning the quadric gradients with the surface normals, our first formulation is exact and requires as low as four oriented points. The second fit approximates the first, and reduces the computational effort. We theoretically analyze these fits with rigor, and give algebraic and geometric arguments. Next, by re-parameterizing the solution, we devise a new local Hough voting scheme on the null-space coefficients that is combined with RANSAC, reducing the complexity from <inline-formula><tex-math notation="LaTeX">O(N^4)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>4</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="birdal-ieq1-2900309.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(N^3)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="birdal-ieq2-2900309.gif"/> </inline-formula> (three points). To the best of our knowledge, this is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes without segmentation. Our extensive qualitative and quantitative results show that our method is efficient and flexible, as well as being accurate.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX