Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 63
Journal of chemical information and modeling, 2019-03, Vol.59 (3), p.1197-1204
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Imputation of Assay Bioactivity Data Using Deep Learning
Ist Teil von
  • Journal of chemical information and modeling, 2019-03, Vol.59 (3), p.1197-1204
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
  • We describe a novel deep learning neural network method and its application to impute assay pIC50 values. Unlike conventional machine learning approaches, this method is trained on sparse bioactivity data as input, typical of that found in public and commercial databases, enabling it to learn directly from correlations between activities measured in different assays. In two case studies on public domain data sets we show that the neural network method outperforms traditional quantitative structure–activity relationship (QSAR) models and other leading approaches. Furthermore, by focusing on only the most confident predictions the accuracy is increased to R 2 > 0.9 using our method, as compared to R 2 = 0.44 when reporting all predictions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX