UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 7 von 1121
Datensatz exportieren als...
BibTeX
Improving snow cover mapping in forests through the use of a canopy reflectance model
CGU HYDROLOGY SECTION/EASTERN SNOW CONFERENCE, 1998-08, Vol.12 (10-11), p.1723-1744
Klein, Andrew G.
Hall, Dorothy K.
Riggs, George A.
Albert, MR
Taylor, S (eds)
Prowse, TD
1998
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Klein, Andrew G.
Hall, Dorothy K.
Riggs, George A.
Albert, MR
Taylor, S (eds)
Prowse, TD
Titel
Improving snow cover mapping in forests through the use of a canopy reflectance model
Ist Teil von
CGU HYDROLOGY SECTION/EASTERN SNOW CONFERENCE, 1998-08, Vol.12 (10-11), p.1723-1744
Ort / Verlag
West Sussex: John Wiley & Sons, Ltd
Erscheinungsjahr
1998
Quelle
Access via Wiley Online Library
Beschreibungen/Notizen
MODIS, the moderate resolution imaging spectroradiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow‐cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time‐series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow‐cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow‐covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow‐cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow‐cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow‐covered and snow‐free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow‐covered TM scenes, and decrease the area incorrectly identified as snow on non‐snow‐covered TM scenes. © 1998 John Wiley & Sons, Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 0885-6087
eISSN: 1099-1085
DOI: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2
Titel-ID: cdi_proquest_miscellaneous_21377461
Format
–
Schlagworte
Algorithms
,
Applied geophysics
,
Computer simulation
,
Earth sciences
,
Earth, ocean, space
,
Exact sciences and technology
,
forest canopy
,
Hydrology
,
Hydrology. Hydrogeology
,
Internal geophysics
,
Mapping
,
Remote sensing
,
Snow
,
snow cover
,
Time series analysis
,
Vegetation
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX