Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
This study investigated the relationship between low wall shear stress (WSS) and severe endothelial dysfunction (EDFx).
Local hemodynamic forces such as WSS play an important role in atherogenesis through their effect on endothelial cells. The study hypothesized that low WSS independently predicts severe EDFx in patients with coronary artery disease (CAD).
Forty-four patients with CAD underwent coronary angiography, fractional flow reserve, and endothelial function testing. Segments with >10% vasoconstriction after acetylcholine (Ach) infusion were defined as having severe EDFx. WSS, calculated using 3-dimensional angiography, velocity measurements, and computational fluid dynamics, was defined as low (<1 Pa), intermediate (1 to 2.5 Pa), or high (>2.5 Pa).
Median age was 52 years, 73% were women. Mean fractional flow reserve was 0.94 ± 0.06. In 4,510 coronary segments, median WSS was 3.67 Pa. A total of 24% had severe EDFx. A higher proportion of segments with low WSS had severe EDFx (71%) compared with intermediate WSS (22%) or high WSS (23%) (p < 0.001). Segments with low WSS demonstrated greater vasoconstriction in response to Ach than did intermediate or high WSS segments (−10.7% vs. −2.5% vs. +1.3%, respectively; p < 0.001). In a multivariable logistic regression analysis, female sex (odds ratio [OR]: 2.44; p = 0.04), diabetes (OR: 5.01; p = 0.007), and low WSS (OR: 9.14; p < 0.001) were independent predictors of severe EDFx.
In patients with nonobstructive CAD, segments with low WSS demonstrated more vasoconstriction in response to Ach than did intermediate or high WSS segments. Low WSS was independently associated with severe EDFx.
[Display omitted]