Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China
Ist Teil von
Journal of hydrology (Amsterdam), 2008-06, Vol.355 (1-4), p.106-122
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2008
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Repeated severe floods and damages in the Poyang Lake basin in China during the 1990s have raised the concern of how the floods have been affected by regional climate variations and by human induced changes in landscape (e.g., draining wetlands around the lake) and land-use in the basin. To address this concern and related issues it is important to know how the climate, land-use and land-cover changes in the region affect the annual and seasonal variations of basin hydrology and streamflow. This knowledge is essential for long-term planning for land-use to protect water resources and to effectively manage floods in the Poyang Lake basin as well as the lower reaches of the Yangtze River. It also has important ecological and socioeconomic implications for the region. This study used the SWAT model to examine the climate and land-use and land-cover effects on hydrology and streamflow in the Xinjiang River basin of the Poyang Lake. A major finding of this study is that the climate effect is dominant in annual streamflow. While land-cover change may have a moderate impact on annual streamflow it strongly influences seasonal streamflow and alters the annual hydrograph of the basin. Because of the vegetation and associated seasonal variations of its impact on evapotranspiration, increase of forest cover after returning agricultural lands to forest reduces wet season streamflow and raises it in dry season, thus reducing flood potentials in the wet season and drought severity in the dry season. On the other hand, losing forests increases flood potential and also enhances drought impacts. Results of this study improve our understanding of hydrological consequences of land-use and climate changes, and provide needed knowledge for effectively developing and managing land-use for sustainability and productivity in the Poyang Lake basin.